Senin, 21 Maret 2011

Mekanika kuantum

Mekanika kuantum adalah cabang dasar fisika yang menggantikan mekanika klasik pada tataran atom dan subatom. Ilmu ini memberikan kerangka matematika untuk berbagai cabang fisika dan kimia, termasuk fisika atom, fisika molekular, kimia komputasi, kimia kuantum, fisika partikel, dan fisika nuklir. Mekanika kuantum adalah bagian dari teori medan kuantum dan fisika kuantum umumnya, yang, bersama relativitas umum, merupakan salah satu pilar fisika modern. Dasar dari mekanika kuantum adalah bahwa energi itu tidak kontinyu, tapi diskrit -- berupa 'paket' atau 'kuanta'. Konsep ini cukup revolusioner, karena bertentangan dengan fisika klasik yang berasumsi bahwa energi itu berkesinambungan.

Mekanika kuantum sangat berguna untuk menjelaskan perilaku atom dan partikel subatomik seperti proton, neutron dan elektron yang tidak mematuhi hukum-hukum fisika klasik. Atom biasanya digambarkan sebagai sebuah sistem di mana elektron (yang bermuatan listrik negatif) beredar seputar nukleus atom (yang bermuatan listrik positif). Menurut mekanika kuantum, ketika sebuah elektron berpindah dari tingkat energi yang lebih tinggi (misalnya dari n=2 atau kulit atom ke-2 ) ke tingkat energi yang lebih rendah (misalnya n=1 atau kulit atom tingkat ke-1), energi berupa sebuah partikel cahaya yang disebut foton, dilepaskan. Energi yang dilepaskan dapat dirumuskan sbb:
E = hf\!
keterangan:
  • E\! adalah energi (J)
  • h\! adalah tetapan Planck, h = 6.63 \times 
10^{-34}\! (Js), dan
  • f\! adalah frekuensi dari cahaya (Hz)
Dalam spektrometer massa, telah dibuktikan bahwa garis-garis spektrum dari atom yang di-ionisasi tidak kontinyu, hanya pada frekuensi/panjang gelombang tertentu garis-garis spektrum dapat dilihat. Ini adalah salah satu bukti dari teori mekanika kuantum.

Model Atom Mekanika Kuantum
Penjelasan tentang struktur atom yang lebih lengkap diperlukan untuk mengetahui struktur yang lebih detil tentang elektron di dalam atom. Model atom yang lengkap harus dapat menerangkan misteri efek Zeeman dan sesuai untuk atom berelektron banyak. Dua gejala ini tidak dapat diterangkan oleh model atom Bohr.
Efek Zeeman
Spektrum garis atomik teramati saat arus listrik dialirkan melalui gas di dalam sebuah tabung lecutan gas. Garis-garis tambahan dalam spektrum emisi teramati jika atom-atom tereksitasi diletakkan di dalam medan magnet luar. Satu garis di dalam spektrum garis emisi terlihat sebagai tiga garis (dengan dua garis tambahan) di dalam spektrum apabila atom diletakkan di dalam medan magnet. Terpecahnya satu garis menjadi beberapa garis di dalam medan magnet dikenal sebagai efek Zeeman.

Efek Zeeman tidak dapat dijelaskan menggunakan model atom Bohr. Dengan demikian, diperlukan model atom yang lebih lengkap dan lebih umum yang dapat menjelaskan efek Zeeman dan spektrum atom berelektron banyak.
Model Atom Mekanika Kuantum
Sebelumnya kita sudah membahas tentang dualisme gelombang-partikel yang menyatakan bahwa sebuah objek dapat berperilaku baik sebagai gelombang maupun partikel. dalam skala atomik, elektron dapat kita tinjau sebagai gejala gelombang yang tidak memiliki posisi tertentu di dalam ruang. Posisi sebuah elektron diwakili oleh kebolehjadian atau peluang terbesar ditemukannya elektron di dalam ruang.
Demi mendapatkan penjelasan yang lengkap dan umum dari struktur atom, prinsip dualisme gelombang-partikel digunakan. Di sini gerak elektron digambarkan sebagai sebuah gejala gelombang. Persamaan dinamika Newton yang sedianya digunakan untuk menjelaskan gerak elektron digantikan oleh persamaan Schrodinger yang menyatakan fungsi gelombang untuk elektron. Model atom yang didasarkan pada prinsip ini disebut model atom mekanika kuantum.

Bilangan Kuantum Magnetik
Momentum sudut elektron L merupakan sebuah vektor. Jika vektor momentum sudut L diproyeksikan ke arah sumbu yang tegak atau sumbu-z secara tiga dimensi akan didapatkan besar komponen momentum sudut arah sumbu-z dinyatakan sebagai Lz. bilangan bulat yang berkaitan dengan besar Lz adalah m. bilangan ini disebut bilangan kuantum magnetik. Karena besar Lz bergantung pada besar momentum sudut elektron L, maka nilai m juga berkaitan dengan nilai l.
m = −l, … , 0, … , +l
misalnya, untuk nilai l = 1, nilai m yang diperbolehkan adalah −1, 0, +1.

Bilangan Kuantum Spin
Bilangan kuantum spin diperlukan untuk menjelaskan efek Zeeman anomali. Anomali ini berupa terpecahnya garis spektrum menjadi lebih banyak garis dibanding yang diperkirakan. Jika efek Zeeman disebabkan oleh adanya medan magnet eksternal, maka efek Zeeman anomali disebabkan oleh rotasi dari elektron pada porosnya. Rotasi atau spin elektron menghasilkan momentum sudut intrinsik elektron. Momentum sudut spin juga mempunyai dua orientasi yang berbeda, yaitu spin atas dan spin bawah. Tiap orientasi spin elektron memiliki energi yang berbeda tipis sehingga terlihat sebagai garis spektrum yang terpisah.

Atom Berelektron Banyak
Model atom mekanika kuantum dapat digunakan untuk menggambarkan struktur atom untuk atom berelektron banyak. Posisi atau keadaan elektron di dalam atom dapat dinyatakan menggunakan seperangkat (empat) bilangan kuantum. Misalnya, elektron dengan bilangan kuantum n = 2, l = 1, m = −1 dan ms = −½ menyatakan sebuah elektron pada kulit L, subkulit p, orbital −1 dengan arah spin ke bawah.

Tidak ada komentar:

Posting Komentar